8 research outputs found

    Single-Sentence Reader: A Novel Approach for Addressing Answer Position Bias

    Full text link
    Machine Reading Comprehension (MRC) models tend to take advantage of spurious correlations (also known as dataset bias or annotation artifacts in the research community). Consequently, these models may perform the MRC task without fully comprehending the given context and question, which is undesirable since it may result in low robustness against distribution shift. This paper delves into the concept of answer-position bias, where a significant percentage of training questions have answers located solely in the first sentence of the context. We propose a Single-Sentence Reader as a new approach for addressing answer position bias in MRC. We implement this approach using six different models and thoroughly analyze their performance. Remarkably, our proposed Single-Sentence Readers achieve results that nearly match those of models trained on conventional training sets, proving their effectiveness. Our study also discusses several challenges our Single-Sentence Readers encounter and proposes a potential solution.Comment: 11 pages, 5 tables, 2 figure

    AGent: A Novel Pipeline for Automatically Creating Unanswerable Questions

    Full text link
    The development of large high-quality datasets and high-performing models have led to significant advancements in the domain of Extractive Question Answering (EQA). This progress has sparked considerable interest in exploring unanswerable questions within the EQA domain. Training EQA models with unanswerable questions helps them avoid extracting misleading or incorrect answers for queries that lack valid responses. However, manually annotating unanswerable questions is labor-intensive. To address this, we propose AGent, a novel pipeline that automatically creates new unanswerable questions by re-matching a question with a context that lacks the necessary information for a correct answer. In this paper, we demonstrate the usefulness of this AGent pipeline by creating two sets of unanswerable questions from answerable questions in SQuAD and HotpotQA. These created question sets exhibit low error rates. Additionally, models fine-tuned on these questions show comparable performance with those fine-tuned on the SQuAD 2.0 dataset on multiple EQA benchmarks.Comment: 16 pages, 10 tables, 3 figure

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in data science. The group consisted of 25 undergraduate faculty from a variety of institutions in the United States, primarily from the disciplines of mathematics, statistics, and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in data science

    Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil

    No full text
    An accurate simulation of a heating coil is used to compare the performance of a PI controller, a neural network trained to predict the steady-state output of the PI controller, a neural network trained to minimize the n-step ahead error between the coil output and the set point, and a reinforcement learning agent trained to minimize the sum of the squared error over time. Although the PI controller works very well for this task, the neural networks do result in improved performance. 1 Introduction Typical methods for designing fixed feedback controllers results in sub-optimal control performance. In many situations, the degree of uncertainty in the model of the system being controlled limits the utility of optimal control design. Building energy systems are particularly troublesome since the process gain is highly variable, depending on the load on components such as heating and cooling coils and on inlet conditions such as air temperature and air volume flow rate. Some of these issu..

    Synthesis of Reinforcement Learning, Neural Networks, and PI Control Applied to a Simulated Heating Coil

    No full text
    An accurate simulation of a heating coil is used to compare the performance of a proportional plus integral (PI) controller, a neural network trained to predict the steady-state output of the PI controller, a neural network trained to minimize the n-step ahead error between the coil output and the set point, and a reinforcement learning agent trained to minimize the sum of the squared error over time. Although the PI controller works very well for this task, the neural networks produce improved performance. The reinforcement learning agent, when combined with a PI controller, learned to augment the PI control output for a small number of states for which control can be improved. Keywords: neural networks, reinforcement learning, PI control, HVAC 1 Introduction Typical methods for designing fixed feedback controllers results in sub-optimal control performance. In many situations, the degree of uncertainty in the model of the system being controlled limits the utility of optimal contro..

    Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil

    No full text
    An accurate simulation of a heating coil is used to compare the performance of a PI controller, a neural network trained to predict the steady-state output of the PI controller, a neural network trained to minimize the n-step ahead error between the coil output and the set point, and a reinforcement learning agent trained to minimize the sum of the squared error over time. Although the PI controller works very well for this task, the neural networks do result in improved performance. 1 Introduction Typical methods for designing fixed feedback controllers results in sub-optimal control performance. In many situations, the degree of uncertainty in the model of the system being controlled limits the utility of optimal control design. Building energy systems are particularly troublesome since the process gain is highly variable, depending on the load on components such as heating and cooling coils and on inlet conditions such as air temperature and air volume flow rate. Some of the..
    corecore